Advertisements
Advertisements
प्रश्न
`∫ cos ^4 2x dx `
उत्तर
\[\int \cos^4 \text{2x dx}\]
\[ = \int \left( \cos^2 2x \right)^2 dx\]
\[ = \int \left( \frac{1 + \cos 4x}{2} \right)^2 dx \left[ \therefore \cos^2 x = \frac{1 + \cos 2x}{2} \right]\]
\[ = \frac{1}{4}\int \left( 1 + \cos 4x \right)^2 dx\]
\[ = \frac{1}{4}\int\left( 1 + \cos^2 4x + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\int\left[ 1 + \left( \frac{1 + \cos 8x}{2} \right) + 2 \cos 4x \right]dx\]
\[ = \frac{1}{4}\int\left( \frac{3}{2} + \frac{\cos 8x}{2} + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\left[ \frac{3x}{2} + \frac{\sin 8x}{16} + \frac{2 \sin 4x}{4} \right] + C\]
\[ = \frac{3x}{8} + \frac{\sin 8x}{64} + \frac{\sin 4x}{8} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]