मराठी

∫ Sin 3 ( 2 X + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

`∫     cos ^4  2x   dx `

टीपा लिहा

उत्तर

\[\int \cos^4 \text{2x dx}\]
\[ = \int \left( \cos^2 2x \right)^2 dx\]
\[ = \int \left( \frac{1 + \cos 4x}{2} \right)^2 dx \left[ \therefore \cos^2 x = \frac{1 + \cos 2x}{2} \right]\]
\[ = \frac{1}{4}\int \left( 1 + \cos 4x \right)^2 dx\]
\[ = \frac{1}{4}\int\left( 1 + \cos^2 4x + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\int\left[ 1 + \left( \frac{1 + \cos 8x}{2} \right) + 2 \cos 4x \right]dx\]
\[ = \frac{1}{4}\int\left( \frac{3}{2} + \frac{\cos 8x}{2} + 2 \cos 4x \right)dx\]
\[ = \frac{1}{4}\left[ \frac{3x}{2} + \frac{\sin 8x}{16} + \frac{2 \sin 4x}{4} \right] + C\]


\[ = \frac{3x}{8} + \frac{\sin 8x}{64} + \frac{\sin 4x}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.06 [पृष्ठ ३६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.06 | Q 3 | पृष्ठ ३६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int \sin^2\text{ b x dx}\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \log_{10} x\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×