मराठी

∫ X 3 − 1 X 3 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 - 1}{x^3 + x} dx\]
बेरीज

उत्तर

We have,
\[I = \int \frac{\left( x^3 - 1 \right)dx}{x^3 + x}\]

Degree of numerator is equal to degree of denominator.
We divide numerator by denominator.


\[ \therefore \frac{x^3 - 1}{x^3 + x} = 1 - \frac{\left( x + 1 \right)}{x^3 + x}\]
\[ \Rightarrow \frac{x^3 - 1}{x^3 + x} = 1 - \frac{\left( x + 1 \right)}{x\left( x^2 + 1 \right)} . . . . . \left( 1 \right)\]
\[\text{Let }\frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x \right)}{x\left( x^2 + 1 \right)}\]
\[ \Rightarrow x + 1 = A x^2 + A + B x^2 + Cx\]
\[ \Rightarrow x + 1 = \left( A + B \right) x^2 + Cx + A\]

Equating coefficient of like terms

A + B = 0
C = 1
A = 1
B = –1

\[\therefore \frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{1}{x} + \frac{- x + 1}{x^2 + 1} . . . . . \left( 2 \right)\]
Using (1) and (2)
\[\int \frac{\left( x^3 - 1 \right)dx}{\left( x^3 + x \right)} = \int \left( 1 - \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{1}{x^2 + 1} \right)dx\]
\[ = \int dx - \int\frac{dx}{x} + \int\frac{x dx}{x^2 + 1} - \int\frac{dx}{x^2 + 1} \]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int dx - \int\frac{dx}{x} + \frac{1}{2}\int\frac{dt}{t} - \int\frac{dx}{x^2 + 1}\]
\[ = x - \log \left| x \right| + \frac{1}{2}\log \left| t \right| - \tan^{- 1} x + C\]
\[ = x - \log \left| x \right| + \frac{1}{2}\log \left| x^2 + 1 \right| - \tan^{- 1} x + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 44 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \sin x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×