हिंदी

∫ X 3 − 1 X 3 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3 - 1}{x^3 + x} dx\]
योग

उत्तर

We have,
\[I = \int \frac{\left( x^3 - 1 \right)dx}{x^3 + x}\]

Degree of numerator is equal to degree of denominator.
We divide numerator by denominator.


\[ \therefore \frac{x^3 - 1}{x^3 + x} = 1 - \frac{\left( x + 1 \right)}{x^3 + x}\]
\[ \Rightarrow \frac{x^3 - 1}{x^3 + x} = 1 - \frac{\left( x + 1 \right)}{x\left( x^2 + 1 \right)} . . . . . \left( 1 \right)\]
\[\text{Let }\frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{A}{x} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow \frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x \right)}{x\left( x^2 + 1 \right)}\]
\[ \Rightarrow x + 1 = A x^2 + A + B x^2 + Cx\]
\[ \Rightarrow x + 1 = \left( A + B \right) x^2 + Cx + A\]

Equating coefficient of like terms

A + B = 0
C = 1
A = 1
B = –1

\[\therefore \frac{x + 1}{x\left( x^2 + 1 \right)} = \frac{1}{x} + \frac{- x + 1}{x^2 + 1} . . . . . \left( 2 \right)\]
Using (1) and (2)
\[\int \frac{\left( x^3 - 1 \right)dx}{\left( x^3 + x \right)} = \int \left( 1 - \frac{1}{x} + \frac{x}{x^2 + 1} - \frac{1}{x^2 + 1} \right)dx\]
\[ = \int dx - \int\frac{dx}{x} + \int\frac{x dx}{x^2 + 1} - \int\frac{dx}{x^2 + 1} \]
\[\text{Putting }x^2 + 1 = t\]
\[ \Rightarrow 2x dx = dt\]
\[ \Rightarrow x dx = \frac{dt}{2}\]
\[ \therefore I = \int dx - \int\frac{dx}{x} + \frac{1}{2}\int\frac{dt}{t} - \int\frac{dx}{x^2 + 1}\]
\[ = x - \log \left| x \right| + \frac{1}{2}\log \left| t \right| - \tan^{- 1} x + C\]
\[ = x - \log \left| x \right| + \frac{1}{2}\log \left| x^2 + 1 \right| - \tan^{- 1} x + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 44 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×