हिंदी

∫ X + 1 X 2 + 4 X + 5 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]
योग

उत्तर

\[\text{ Let  I } = \int\frac{\left( x + 1 \right)}{x^2 + 4x + 5}dx\]

\[\text{ and   let} \left( x + 1 \right) = A\frac{d}{dx}\left( x^2 + 4x + 5 \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 4 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + 4A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and }\ 4A + B = 1\]

\[ \Rightarrow 4 \times \frac{1}{2} + B = 1\]

\[ \Rightarrow B = - 1\]

\[ \therefore \left( x + 1 \right) = \frac{1}{2} \left( 2x + 4 \right) - 1\]

\[ \therefore I = \int\left[ \frac{\frac{1}{2}\left( 2x + 4 \right) - 1}{x^2 + 4x + 5} \right]dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 4 \right)}{x^2 + 4x + 5}dx - \int\frac{1}{x^2 + 4x + 5}dx\]

\[\text{ Putting  x}^2 + 4x + 5 = t\]

\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt - \int\frac{1}{x^2 + 4x + 4 + 1}dx\]

\[ = \frac{1}{2}\int\frac{dt}{t} - \int\frac{1}{\left( x + 2 \right)^2 + 1^2}dx \]

\[ = \frac{1}{2} \text{ ln } \left| t \right| - \tan^{- 1} \left( \frac{x + 2}{1} \right) + C............. \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]

\[ = \frac{1}{2} \text{ ln }\left| x^2 + 4x + 5 \right| - \tan^{- 1} \left( x + 2 \right) + C ...................\left[ \because t = x^2 + 4x + 5 \right]\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 51 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int x^2 \sin^2 x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×