हिंदी

∫ Cos X ( 1 − Sin X ) 3 ( 2 + Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
योग

उत्तर

We have,
\[ I = \int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\text{Let, }\sin x = t\]
\[ \Rightarrow \cos x dx = dt\]
\[\text{Now, integration becomes}, \]
\[I = \int\frac{dt}{\left( 1 - t \right)^3 \left( 2 + t \right)} \]
\[ = - \int\frac{dt}{\left( t - 1 \right)^3 \left( t + 2 \right)} \]
\[\text{Let, }\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{A}{\left( t - 1 \right)} + \frac{B}{\left( t - 1 \right)^2} + \frac{C}{\left( t - 1 \right)^3} + \frac{D}{\left( t + 2 \right)} ................(1)\]
\[ \Rightarrow 1 = A \left( t - 1 \right)^2 \left( t + 2 \right) + B\left( t - 1 \right)\left( t + 2 \right) + C\left( t + 2 \right) + D \left( t - 1 \right)^3 ....................(2)\]

\[\text{Putting t = 1 in (2), we get}\]
\[1 = 3C\]
\[ \Rightarrow C = \frac{1}{3}\]
\[\text{Putting t = - 2 in (2), we get}\]
\[1 = D \left( - 2 - 1 \right)^3 \]
\[ \Rightarrow 1 = - 27D\]
\[ \Rightarrow D = \frac{- 1}{27}\]
\[\text{Putting t = 0 in (2), we get}\]
\[1 = 2A - 2B + 2C - D\]
\[ \Rightarrow 1 = 2A - 2B + \frac{2}{3} + \frac{1}{27}\]
\[ \Rightarrow 2A - 2B = \frac{8}{27}\]
\[ \Rightarrow A - B = \frac{4}{27}\]
\[\text{Putting t = 2 in (2), we get}\]
\[1 = 4A + 4B + 4C + D\]
\[ \Rightarrow 1 = 4A + 4B + \frac{4}{3} - \frac{1}{27}\]
\[ \Rightarrow A + B = - \frac{2}{27}\]
\[Now, A - B = \frac{4}{27}\text{ and }A + B = - \frac{2}{27} \Rightarrow A = \frac{1}{27}\text{ and }B = \frac{- 1}{9}\]

\[\text{Substituting the values of A, B, C and D in (1), we get}\]
\[\frac{1}{\left( t - 1 \right)^3 \left( t + 2 \right)} = \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)}\]
\[\text{Now, integration becomes}\]
\[ I = - \int\left[ \frac{1}{27\left( t - 1 \right)} - \frac{1}{9 \left( t - 1 \right)^2} + \frac{1}{3 \left( t - 1 \right)^3} + \frac{- 1}{27\left( t + 2 \right)} \right]dt\]
\[ = - \left[ \frac{1}{27}\log \left| t - 1 \right| + \frac{1}{9\left( t - 1 \right)} - \frac{1}{6 \left( t - 1 \right)^2} - \frac{1}{27}\log \left| t + 2 \right| \right] + C\]
\[ = - \frac{1}{27}\log \left| \sin x - 1 \right| - \frac{1}{9\left( \sin x - 1 \right)} + \frac{1}{6 \left( \sin x - 1 \right)^2} + \frac{1}{27}\log \left| \sin x + 2 \right| + C\]
\[ = - \frac{1}{27}\log \left| 1 - \sin x \right| + \frac{1}{9\left( 1 - \sin x \right)} + \frac{1}{6 \left( 1 - \sin x \right)^2} + \frac{1}{27}\log \left| 2 + \sin x \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 49 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cos^5 x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×