Advertisements
Advertisements
प्रश्न
\[\int \cos^5 x \text{ dx }\]
योग
उत्तर
∫ cos5 x dx
= ∫ cos4 x . cos x dx
= ∫ (1 – sin2 x)2 cos x dx
Let sin x = t
⇒ cos x dx = dt
Now, ∫ (1 – sin2 x)2 cos x dx
= ∫ (1 – t2)2 . dt
= ∫ (1 + t4 – 2t2) dt
= ∫ dt + ∫ t4 dt – 2 ∫t2 dt
\[= t + \frac{t^5}{5} - \frac{2 t^3}{3} + C\]
\[ = \sin x + \frac{\sin^5 x}{5} - \frac{2}{3} \sin^3 x + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
` ∫ {"cosec" x }/ { log tan x/2 ` dx
\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]
\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]
`int 1/(cos x - sin x)dx`
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{1 - \cot x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int e^\sqrt{x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int x \sin x \cos 2x\ dx\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]