हिंदी

∫ ( 3 Sin X − 2 ) Cos X 5 − Cos 2 X − 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
योग

उत्तर

` ∫   {( 3 sin x -2 ) cos x   dx}/{5 cos^2 x -4 sin x} `
` ∫   {( 3 sin x -2 ) cos x   dx}/{5 -(1 - sin^2)-4 sin x} `
` ∫   {( 3 sin x -2 ) cos x   dx}/{sin^2 x -4  sin x + 4}`

`\text{ Let sin x }= t`
\[ \Rightarrow \text{ cos x dx} = dt\]
\[\int\frac{\left( 3t - 2 \right) dt}{t^2 - 4t + 4}\]
\[3t - 2 = A\frac{d}{dx}\left( t^2 - 4t + 4 \right) + B\]
\[3t - 2 = A \left( 2t - 4 \right) + B\]
\[3t - 2 = \left( 2 A \right) t + B - 4 A\]

Comparing the Coefficients of like powers of t

\[\text{ 2 A }= 3\]
\[A = \frac{3}{2}\]
\[\text{ B - 4  A }= - 2\]
\[B - 4 \times \frac{3}{2} = - 2\]
\[B = - 2 + 6\]
\[B = 4\]

\[3t - 2 = \frac{3}{2} \left( 2t - 4 \right) + 4\]
\[ \therefore \int\frac{\left( 3t - 2 \right) dt}{t^2 - 4t + 4}\]
\[ = \int\left( \frac{\frac{3}{2}\left( 2t - 4 \right) + 4}{t^2 - 4t + 4} \right)dt\]
\[ = \frac{3}{2}\int\left( \frac{2t - 4}{t^2 - 4t + 4} \right)dt + 4\int\frac{dt}{t^2 - 4t + 4}\]
`  =  3/2    I_1 + 4      I_2  . . . ( 1 )`
 Where
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}, I_2 = \int\frac{dt}{t^2 - 4t + 4}\]
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}\]
\[\text{ Let t }^2 - 4t + 4 = p\]
\[ \Rightarrow \left( 2t - 4 \right) dt = dp\]
\[ I_1 = \int\frac{\left( 2t - 4 \right) dt}{t^2 - 4t + 4}\]
\[ = \int\frac{dp}{p}\]
\[ = \text{ log }\left| p \right| + C_1 \]
\[ = \text{ log }\left| t^2 - 4t + 4 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dt}{t^2 - 4t + 4}\]
\[ I_2 = \int\frac{dt}{\left( t - 2 \right)^2}\]
\[ I_2 = \int \left( t - 2 \right)^{- 2} dt\]
\[ I_2 = \frac{\left( t - 2 \right)^{- 2 + 1}}{- 2 + 1} + C_2 \]
\[ I_2 = \frac{- 1}{t - 2} + C_2 . . . \left( 3 \right)\]
\[\text{ from }\left( 1 \right), \left( 2 \right) \text{ and }\left( 3 \right)\]
` ∫   {( 3 sin x -2 ) cos x   dx}/{5 cos^2 x -4 sin x} `
\[ = \frac{3}{2} \text{ log } \left| t^2 - 4t + 4 \right| + 4 \times \frac{- 1}{t - 2} + C_1 + C_2 \]
\[ = \frac{3}{2} \text{ log }\left| \sin^2 x - 4 \sin x + 4 \right| + \frac{4}{2 - t} + C \left( \text{ Where C }= C_1 + C_2 \right)\]
\[ = \frac{3}{2}\text{ log }\left| \left( \sin x - 2 \right)^2 \right| + \frac{4}{2 - \sin x} + C\]
\[ = \frac{3}{2} \times 2 \text{ log }\left| \sin x - 2 \right| + \frac{4}{2 - \sin x} + C\]
\[ = 3 \text{ log }\left| 2 - \sin x \right| + \frac{4}{2 - \sin x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 10 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

` ∫      tan^5    x   dx `


\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\cos\sqrt{x}\ dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×