हिंदी

∫ 1 ( X + 1 ) 2 ( X 2 + 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{Cx + D}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{A \left( x + 1 \right) \left( x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^3 + x + x^2 + 1 \right) + B \left( x^2 + 1 \right) + \left( Cx + D \right)\left( x^2 + 2x + 1 \right)\]

\[ \Rightarrow 1 = A \left( x^3 + x^2 + x + 1 \right) + B \left( x^2 + 1 \right) + C x^3 + 2C x^2 + Cx + D x^2 + 2Dx + D\]

\[ \Rightarrow 1 = \left( A + C \right) x^3 + \left( A + B + 2C + D \right) x^2 + \left( A + C + 2D \right) x + A + B + D\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 . . . . . \left( 1 \right)\]

\[A + B + 2C + D = 0 . . . . . \left( 2 \right)\]

\[A + C + 2D = 0 . . . . . \left( 3 \right)\]

\[A + B + D = 1 . . . . . \left( 4 \right)\]

\[A = \frac{1}{2}, B = \frac{1}{2}, C = - \frac{1}{2}\text{ and }D = 0\]

\[ \therefore \frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2 \left( x + 1 \right)} + \frac{1}{2 \left( x + 1 \right)^2} - \frac{1}{2} \times \frac{x}{x^2 + 1}\]

\[ \Rightarrow \int\frac{dx}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{2}\int\frac{x dx}{x^2 + 1}\]

\[\text{Putting }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\frac{dx}{\left( x + 1 \right)^2} - \frac{1}{4}\int\frac{dt}{t}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| t \right| + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{2 \left( x + 1 \right)} - \frac{1}{4} \log \left| x^2 + 1 \right| + C'\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 39 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^2 \sin^2 x\ dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×