हिंदी

∫ 1 Sin 3 X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` = ∫1/{sin^3 x cos^ 2x} dx`

योग

उत्तर

\[\int\frac{dx}{\sin^3 x . \cos x}\]
` "Dividing numerator and denominator by"  sin^4 x`

\[ = \int\frac{\frac{1}{\sin^4 x}dx}{\frac{\sin^3 x . \cos x}{\sin^4 x}}\]

\[ = \int\frac{{cosec}^4 x dx}{\cot x}\]

\[ = \int\frac{{cosec}^2 x . {cosec}^2 x dx}{\cot x}\]
`= {( 1 + cot^2 x ) . "cosec"^2  x    dx}/cot x`

\[Let \cot x = t\]

` ⇒ "-cosec"^2  x   =  dt / dx  `

` ⇒ "cosec"^2  x  dx = - dt  `
\[Now, \int\frac{\left( 1 + \cot^2 x \right) . {cosec}^2 x}{\cot x}dx\]

\[ = \int\frac{\left( 1 + t^2 \right) . \left( - dt \right)}{t}\]

\[ = - \int\left( \frac{1}{t} + t \right)dt\]

\[ = - \log \left| t \right| - \frac{t^2}{2} + C\]

\[ = - \log \left| \cot x \right| - \frac{\cot^2 x}{2} + C\]

\[ = \log \left| \cot x \right|^{- 1} - \frac{\left( {cosec}^2 x - 1 \right)}{2} + C\]

\[ = \log \left| \frac{1}{\cot x} \right| - \frac{{cosec}^2 x}{2} + \frac{1}{2} + C\]

\[ = \log \left| \tan x \right| - \frac{1}{2 \sin^2 x} + C' \left[ \therefore C' = C + \frac{1}{2} \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.12 | Q 12 | पृष्ठ ७३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x}\ dx\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×