Advertisements
Advertisements
प्रश्न
` = ∫1/{sin^3 x cos^ 2x} dx`
उत्तर
\[\int\frac{dx}{\sin^3 x . \cos x}\]
` "Dividing numerator and denominator by" sin^4 x`
\[ = \int\frac{\frac{1}{\sin^4 x}dx}{\frac{\sin^3 x . \cos x}{\sin^4 x}}\]
\[ = \int\frac{{cosec}^4 x dx}{\cot x}\]
\[ = \int\frac{{cosec}^2 x . {cosec}^2 x dx}{\cot x}\]
`= {( 1 + cot^2 x ) . "cosec"^2 x dx}/cot x`
\[Let \cot x = t\]
` ⇒ "-cosec"^2 x = dt / dx `
` ⇒ "cosec"^2 x dx = - dt `
\[Now, \int\frac{\left( 1 + \cot^2 x \right) . {cosec}^2 x}{\cot x}dx\]
\[ = \int\frac{\left( 1 + t^2 \right) . \left( - dt \right)}{t}\]
\[ = - \int\left( \frac{1}{t} + t \right)dt\]
\[ = - \log \left| t \right| - \frac{t^2}{2} + C\]
\[ = - \log \left| \cot x \right| - \frac{\cot^2 x}{2} + C\]
\[ = \log \left| \cot x \right|^{- 1} - \frac{\left( {cosec}^2 x - 1 \right)}{2} + C\]
\[ = \log \left| \frac{1}{\cot x} \right| - \frac{{cosec}^2 x}{2} + \frac{1}{2} + C\]
\[ = \log \left| \tan x \right| - \frac{1}{2 \sin^2 x} + C' \left[ \therefore C' = C + \frac{1}{2} \right]\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]