मराठी

∫ 1 Sin 3 X Cos X D X - Mathematics

Advertisements
Advertisements

प्रश्न

` = ∫1/{sin^3 x cos^ 2x} dx`

बेरीज

उत्तर

\[\int\frac{dx}{\sin^3 x . \cos x}\]
` "Dividing numerator and denominator by"  sin^4 x`

\[ = \int\frac{\frac{1}{\sin^4 x}dx}{\frac{\sin^3 x . \cos x}{\sin^4 x}}\]

\[ = \int\frac{{cosec}^4 x dx}{\cot x}\]

\[ = \int\frac{{cosec}^2 x . {cosec}^2 x dx}{\cot x}\]
`= {( 1 + cot^2 x ) . "cosec"^2  x    dx}/cot x`

\[Let \cot x = t\]

` ⇒ "-cosec"^2  x   =  dt / dx  `

` ⇒ "cosec"^2  x  dx = - dt  `
\[Now, \int\frac{\left( 1 + \cot^2 x \right) . {cosec}^2 x}{\cot x}dx\]

\[ = \int\frac{\left( 1 + t^2 \right) . \left( - dt \right)}{t}\]

\[ = - \int\left( \frac{1}{t} + t \right)dt\]

\[ = - \log \left| t \right| - \frac{t^2}{2} + C\]

\[ = - \log \left| \cot x \right| - \frac{\cot^2 x}{2} + C\]

\[ = \log \left| \cot x \right|^{- 1} - \frac{\left( {cosec}^2 x - 1 \right)}{2} + C\]

\[ = \log \left| \frac{1}{\cot x} \right| - \frac{{cosec}^2 x}{2} + \frac{1}{2} + C\]

\[ = \log \left| \tan x \right| - \frac{1}{2 \sin^2 x} + C' \left[ \therefore C' = C + \frac{1}{2} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.12 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.12 | Q 12 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int x \cos x\ dx\]

\[\int x^2 \cos 2x\ \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×