मराठी

∫ 1 1 − X − 4 X 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int\frac{1}{1 - x - 4 x^2}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - - x^2 \frac{x}{4}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x^2 + \frac{x}{4} \right)}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left\{ x^2 + + \left( \frac{1}{8} \right)^2 - \left( \frac{1}{8} \right)^2 \frac{x}{4} \right\}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} - \left( x + \frac{1}{8} \right)^2 + \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{1}{4} + - \left( x + \frac{1}{8} \right)^2 \frac{1}{64}}dx\]
\[ = \frac{1}{4}\int\frac{1}{\frac{16 + 1}{64} - \left( x + \frac{1}{8} \right)^2}dx\]


\[ = \frac{1}{4}\int\frac{1}{\left( \frac{\sqrt{17}}{8} \right)^2 - \left( x + \frac{1}{8} \right)^2}dx\]
\[ = \frac{1}{4} \times \frac{1}{2 \times \frac{\sqrt{17}}{8}} \text{ ln }\left| \frac{\frac{\sqrt{17}}{8} + x + \frac{1}{8}}{\frac{\sqrt{17}}{8} - x - \frac{1}{8}} \right| + C .................\left[ \because \int\frac{1}{a^2 - x^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{a + x}{a - x} \right| + C \right]\]
\[ = \frac{1}{\sqrt{17}} \text{ ln }\left| \frac{\frac{\sqrt{17} + 1}{8} + x}{\frac{\sqrt{17} - 1}{8} - x} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 46 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{a}{b + c e^x} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int {cosec}^3 x\ dx\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int \sec^4 x\ dx\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×