Advertisements
Advertisements
प्रश्न
\[\int\sqrt {e^x- 1} \text{dx}\]
बेरीज
उत्तर
\[\int\sqrt{e^x - 1}dx\]
\[\text{Let e}^x - 1 = t^2 \]
\[ \Rightarrow e^x = t^2 + 1\]
\[ e^x = \text{2t }\frac{dt}{dx}\]
`dx = {2t dt}/{e^x} `
`dx = {2t dt}/{t^2 + 1} `
\[Now, \int\sqrt{e^x - 1}dx\]
` = ∫ { t . 2t dt}/{t^2 + 1} `
` =2 ∫ { t^2 dt}/{t^2 + 1} `
\[ = 2\ ∫ \left( \frac{t^2 + 1 - 1}{t^2 + 1} \right)dt \]
\[ = 2\ ∫ dt - 2\int\frac{dt}{t^2 + 1}\]
\[ = 2t - 2 \tan^{- 1} \left( t \right) + C\]
\[ = 2\sqrt{e^x - 1} - 2 \tan^{- 1} \left( \sqrt{e^x - 1} \right) + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]
\[\int \cos^{- 1} \left( \sin x \right) dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \text{dx} \]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]
\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx }\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\sqrt{2ax - x^2} \text{ dx}\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x^3 - 1}{x^3 + x} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\sqrt{\text{ cosec x} - 1} \text{ dx }\]
\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]
\[\int \tan^5 x\ \sec^3 x\ dx\]
\[\int x\sqrt{1 + x - x^2}\text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]