मराठी

∫ √ 1 − X 1 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\sqrt{\frac{1 - x}{1 + x}} dx\]
\[ = \int\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} dx\]
\[ = \int\left( \frac{1 - x}{\sqrt{1 - x^2}} \right) dx\]
\[ = \int\frac{dx}{\sqrt{1 - x^2}} - \int\frac{x dx}{\sqrt{1 - x^2}}\]
\[\text{ Putting }1 - x^2 = t\]
\[ \Rightarrow \text{ - 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= - \frac{dt}{2}\]
\[\text{ Then, } \]
\[I = \int\frac{dx}{\sqrt{1 - x^2}} + \frac{1}{2}\int\frac{dt}{\sqrt{t}}\]
\[ = \sin^{- 1} \left( x \right) + \frac{1}{2} \times 2\sqrt{t} + C\]
\[ = \sin^{- 1} \left( x \right) + \sqrt{1 - x^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.21 | Q 14 | पृष्ठ ११०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int \tan^3 x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×