Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int\sqrt{\frac{1 - x}{1 + x}} dx\]
\[ = \int\sqrt{\frac{\left( 1 - x \right)\left( 1 - x \right)}{\left( 1 + x \right)\left( 1 - x \right)}} dx\]
\[ = \int\left( \frac{1 - x}{\sqrt{1 - x^2}} \right) dx\]
\[ = \int\frac{dx}{\sqrt{1 - x^2}} - \int\frac{x dx}{\sqrt{1 - x^2}}\]
\[\text{ Putting }1 - x^2 = t\]
\[ \Rightarrow \text{ - 2x dx } = dt\]
\[ \Rightarrow \text{ x dx }= - \frac{dt}{2}\]
\[\text{ Then, } \]
\[I = \int\frac{dx}{\sqrt{1 - x^2}} + \frac{1}{2}\int\frac{dt}{\sqrt{t}}\]
\[ = \sin^{- 1} \left( x \right) + \frac{1}{2} \times 2\sqrt{t} + C\]
\[ = \sin^{- 1} \left( x \right) + \sqrt{1 - x^2} + C\]
APPEARS IN
संबंधित प्रश्न
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \sec^4 x\ dx\]