मराठी

∫ ( 2 X − 5 ) √ X 2 − 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 

बेरीज

उत्तर

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int \left( 2x - 4 - 1 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int\sqrt{x^2 - 4x + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{x^2 - 4x + 4 - 4 + 3} \text{  dx }\]
\[ = \int\left( 2x - 4 \right) \sqrt{x^2 - 4x + 3} \text{  dx }- \int \sqrt{\left( x - 2 \right)^2 - 1^2} \text{  dx }\]
\[\text{ Let x}^2 - 4x + 3 = t\]
\[ \Rightarrow \left( 2x - 4 \right)dx = dt\]
\[ \therefore I = \int\sqrt{t}\text{  dt }- \int\sqrt{\left( x - 2 \right)^2 - 1^2} dx\]
\[ = \frac{2}{3} t^\frac{3}{2} - \left[ \frac{x - 2}{2} \sqrt{\left( x - 2 \right)^2 - 1^2} - \frac{1^2}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{\left( x - 2 \right)^2 - 1} \right| \right] + C\]
\[ = \frac{2}{3} \left( x^2 - 4x + 3 \right)^\frac{3}{2} - \left( \frac{x - 2}{2} \right) \sqrt{x^2 - 4x + 3} + \frac{1}{2}\text{ log }\left| \left( x - 2 \right) + \sqrt{x^2 - 4x + 3} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.29 | Q 9 | पृष्ठ १५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^6 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \cos^2 x\ dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×