Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{1}{\sqrt{1 - \cos 2x}}dx\]
\[ = \int\frac{1}{\sqrt{2 \sin^2 x}}dx \left[ \because 1 - \cos 2x = 2 \ sin^2 x \right]\]
` = 1/sqrt2 ∫ "cosec" x dx `
\[ = \frac{1}{\sqrt{2}}\text{ln }\left| \text{cosec x} - \text{ cot x} \right| + C\]
` = 1/\sqrt{2} In | 1/ sin x - cos x / sin x| + C`
` = 1/\sqrt{2} In | {2 sin ^{2 x/2}} / sin x | + C ` ` [ ∵ 1 - cos x = 2 sin^2 x/2 ]`
` = 1/\sqrt{2} In | {2 sin ^{2x/2}} / {2sin x/2 cos x/2 } |` + C ` [ ∵ sin x = 2 sin x/2 cos x/2 ]`
\[ = \frac{1}{\sqrt{2}} \text{ln} \left| \tan\frac{x}{2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
` ∫ tan^5 x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`