मराठी

∫ Sin X √ 4 Cos 2 X − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
बेरीज

उत्तर

` ∫   { sin  x  dx }/{\sqrt{4 + cos^2 x -1}} `
\[\text{ let }\cos x = t\]
\[ \Rightarrow - \text{ sin x dx }= dt\]
\[ \Rightarrow \text{ sin x dx } = - dt\]
Now, ` ∫   { sin  x  dx }/{\sqrt{4 + cos^2 x -1}} `
\[ = \int\frac{- dt}{\sqrt{4 t^2 - 1}}\]
\[ = \int\frac{- dt}{\sqrt{4\left( t^2 - \frac{1}{4} \right)}}\]
\[ = - \frac{1}{2}\int\frac{dt}{\sqrt{t^2 - \left( \frac{1}{2} \right)^2}}\]
\[ = - \frac{1}{2} \text{ log }\left| t + \sqrt{t^2 - \frac{1}{4}} \right| + C\]
\[ = - \frac{1}{2} \text{ log } \left| t + \frac{\sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2} \text{ log }\left| \frac{2t + \sqrt{4 t^2 - 1}}{2} \right| + C\]
\[ = - \frac{1}{2}\left[ \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| - \text{ log 2 }  \right] + C\]
\[ = - \frac{1}{2} \text{ log }\left| 2t + \sqrt{4 t^2 - 1} \right| + \frac{\text{ log }  2}{2} + C\]
`  \text{ let C '} = {\log 2}/{2} + C `
` = -{1}/{2} log  |2 cos t + \sqrt{4 \cos^2 t - 1} \| + C `

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 5 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×