मराठी

∫ 1 1 + Tan X D X = - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 + \tan x} dx =\]

पर्याय

  • loge (x + sin x) + C

  • loge (sin x + cos x) + C

  • \[2 \sec^2 \frac{x}{2} + C\]

  • \[\frac{1}{2}\] [x + log (sin x + cos x)] + C

MCQ

उत्तर

\[\frac{1}{2}\]  [x + ln (sin x + cos x)] + C

 

\[\text{Let }I = \int\frac{1}{1 + \tan x}dx\]
\[ = \int\frac{1}{1 + \frac{\sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\frac{2 \cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\left[ \frac{\left( \cos x + \sin x \right) + \left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\cos x + \sin x}{\cos x + \sin x} \right)dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[\text{Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{dt}{t}\]
\[ = \frac{x}{2} + \frac{1}{2}\ln \left| t \right| + C\]
\[ = \frac{x}{2} + \frac{1}{2} \ln \left| \cos x + \sin x \right| + C .............\left( \because t = \sin x + \cos x \right)\]
\[ = \frac{1}{2}\left[ x + \ln \left( \sin x + \cos x \right) \right] + C\]

shaalaa.com

Notes

Generally here book is taking loge x  as log x . So we are writing ln x or loge xinstead log only .

  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 11 | पृष्ठ २००

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int \cos^5 x\ dx\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×