Advertisements
Advertisements
प्रश्न
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
उत्तर
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
` " Taking x as the first function and cosec"^2 x " as the second function " . `
\[ = x\int {cosec}^2 x\ dx - \int\left\{ \frac{d}{dx}\left( x \right)\int {cosec}^2 x\ dx \right\}dx\]
\[ = - x \text{ cot x } + \int\text{ cot x dx }\]
\[ = - x \text{ cot x }+ \text{ log }\left| \sin x \right| + c\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]