मराठी

If ∫ 1 ( X + 2 ) ( X 2 + 1 ) D X = a Log ∣ ∣ 1 + X 2 ∣ ∣ + B Tan − 1 X + 1 5 Log | X + 2 | + C , Then - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then

पर्याय

  • \[ a = - \frac{1}{10}, b = - \frac{2}{5}\]

  • \[a = \frac{1}{10}, b = - \frac{2}{5}\]

  • \[ a = - \frac{1}{10}, b = \frac{2}{5}\]

  • \[ a = \frac{1}{10}, b = \frac{2}{5}\]
MCQ

उत्तर

\[ a = - \frac{1}{10}, b = \frac{2}{5}\]

 

\[\text{Let }I = \int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx\]
We express,
\[\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)} = \frac{A}{x + 2} + \frac{Bx + C}{x^2 + 1}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) + \left( Bx + C \right)\left( x + 2 \right)\]
On comparing the coefficients of `x^2, x` and constants, we get
\[0 = A + B\text{ and }0 = 2B + C\text{ and }1 = A + 2C\]
\[\text{or }A = \frac{1}{5}\text{ and }B = - \frac{1}{5}\text{ and }C = \frac{2}{5}\]
\[ \therefore I = \int\left( \frac{\frac{1}{5}}{x + 2} + \frac{- \frac{1}{5}x + \frac{2}{5}}{x^2 + 1} \right)dx\]
\[ = \frac{1}{5}\int\frac{1}{x + 2}dx - \frac{1}{5}\int\frac{x}{x^2 + 1}dx + \frac{2}{5}\int\frac{1}{x^2 + 1}dx\]
\[ = \frac{1}{5}\log\left| x + 2 \right| - \frac{1}{10}\log\left| x^2 + 1 \right| + \frac{2}{5} \tan^{- 1} x + C\]
\[\text{Since, }\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C\]
\[\text{Therefore, }a = - \frac{1}{10}\text{ and }b = \frac{2}{5}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - MCQ [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
MCQ | Q 35 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×