Advertisements
Advertisements
प्रश्न
\[\int e^x \left( \cot x + \log \sin x \right) dx\]
बेरीज
उत्तर
\[\text{ Let I }= \int e^x \left( \cot x + \log \sin x \right)dx\]
\[\text{ Here,} f(x) = \log \sin x Put e^x f(x) = t\]
\[ \Rightarrow f'(x) = \cot x\]
\[\text{ let e}^x \log \sin x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \text{ log } \left( \sin x \right) + e^x \times \frac{1}{\sin x} \times \cos x = \frac{dt}{dx}\]
\[ \Rightarrow \left[ e^x \text{ log}\left( \sin x \right) + e^x \cot x \right]dx = dt\]
\[ \Rightarrow e^x \left( \cot x + \text{ log }\sin x \right)dx = dt\]
\[ \therefore \int e^x \left( \cot x + \log \sin x \right)dx = \int dt\]
\[ = t + C\]
\[ = e^x \log \sin x + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
\[\int \text{sin}^2 \left( 2x + 5 \right) \text{dx}\]
\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]
\[\int x^3 \sin x^4 dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan^5 x sec ^4 x dx `
` ∫ tan^5 x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \cos^7 x \text{ dx } \]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{x^2}{x^6 + a^6} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \cos 2x\ \text{ dx }\]
\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]
` ∫ x tan ^2 x dx
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\sqrt{3 - x^2} \text{ dx}\]
\[\int\sqrt{x^2 - 2x} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int x \sec^2 2x\ dx\]
\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]