Advertisements
Advertisements
प्रश्न
\[\int x^3 \sin x^4 dx\]
बेरीज
उत्तर
\[\int x^3 \cdot \sin x^4 dx\]
\[\text{Let x}^4 = t\]
\[ \Rightarrow 4 x^3 = \frac{dt}{dx}\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \text{sin x^4} \text{dx}\]
\[ = \frac{1}{4}\int\text{sin t dt}\]
\[ = \frac{1}{4}\left[ - \cos t \right] + C\]
\[ = \frac{1}{4}\left[ - \cos x^4 \right] + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
` ∫ 1/ {1+ cos 3x} ` dx
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]
\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]
\[\int\sqrt {e^x- 1} \text{dx}\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]
\[\int\frac{x}{\sqrt{4 - x^4}} dx\]
\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]
\[\int x e^x \text{ dx }\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{ dx }\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]
\[\int \sin^4 2x\ dx\]
\[\int\frac{1}{e^x + 1} \text{ dx }\]
\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]