मराठी

∫ √ Sin X Cos 3 X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
बेरीज

उत्तर

\[ \text{ Let  I} = \int\sqrt{\sin x} \cdot \cos^3 \text{ x  dx }\]
\[ = \int\sqrt{\sin x} \cdot \left( \cos^2 x \right) \cdot \text{ cos  x  dx }\]
\[ = \int\sqrt{\sin x} \left( 1 - \sin^2 x \right) \cdot \text{ cos  x  dx}\]
\[\text{ Putting  sin x} = t\]
\[ \Rightarrow \text{ cos x  dx }= dt\]
\[ \therefore I = \int\sqrt{t} \left( 1 - t^2 \right) \cdot dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{1}{2} \cdot t^2 dt\]
\[ = \int t^\frac{1}{2} dt - \int t^\frac{5}{2} dt\]
\[ = \frac{t^\frac{3}{2}}{\frac{3}{2}} - \frac{t^\frac{7}{2}}{\frac{7}{2}} + C\]
\[ = \frac{2}{3} t^\frac{3}{2} - \frac{2}{7} t^\frac{7}{2} + C\]
\[ = \frac{2}{3} \text{ sin }^\frac{3}{2} \text{ x }- \frac{2}{7} \text{ sin }^\frac{7}{2} \text{ x }+ C ..........\left[ \because t = \text{ sin x }\right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 40 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int x^3 \cos x^2 dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×