मराठी

∫ 2 X 2 + X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
बेरीज

उत्तर

 

\[\int\frac{\text{ 2x } dx}{\left( 2 + x - x^2 \right)}\]
\[2x = A\frac{d}{dx}\left( 2 + x - x^2 \right) + B\]
\[2x = A \left( 0 + 1 - 2x \right) + B\]
\[2x = \left( - 2 A \right) x + A + B\]

Comparing the Coefficients of like powers of x

\[- 2\text{ A }= 2\]
\[A = - 1\]
\[A + B = 0\]
\[ - 1 + B = 0\]
\[B = 1\]

Now ` ∫  { 2x    dx }/ {(2 + x - x^2 )}`

`=∫   ({-1 ( 1 - 2x ) + 1 } / { -x^2 + x + 2 }) dx`
\[ = - \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx + \int\frac{dx}{- x^2 + x + 2}\]
\[ = - I_1 + I_2 . . . \left( 1 \right) \left( say \right) where\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[\text{ let }- x^2 + x + 2 = t\]
\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ I_1 = \text{ log } \left| t \right| + C_1 \]
\[ = \text{ log } \left| 2 + x - x^2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x - 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2}\]
\[ I_2 = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2}\]
\[ I_2 = - \frac{1}{2 \times \frac{3}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{3}{2}}{x - \frac{1}{2} + \frac{3}{2}} \right| + C_2 \]
\[ I_2 = - \frac{1}{3} \text{ log }\left| \frac{x - 2}{x + 1} \right| + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right) \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\left( \frac{2x}{2 + x - x^2} \right)dx = - \text{ log } \left| 2 + x - x^2 \right| - \frac{1}{3}\text{ log }\left| \frac{x - 2}{x + 1} \right| + C_1 + C_2 \]
\[ = - \text{ log } \left| 2 + x - x^2 \right| + \frac{1}{3} \log \left| \frac{1 + x}{x - 2} \right| + C\]
\[\text{ where } C = C_1 + C_2\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.19 | Q 6 | पृष्ठ १०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\int \cos^7 x \text{ dx  } \]

` = ∫1/{sin^3 x cos^ 2x} dx`


Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×