मराठी

∫ 1 ( 1 + X 2 ) √ 1 − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have,} \]
\[I = \int \frac{dx}{\left( 1 + x^2 \right) \sqrt{1 - x^2}}\]
\[\text{ Putting  x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\left( 1 + \frac{1}{t^2} \right) \sqrt{1 - \frac{1}{t^2}}}\]
\[ = \int \frac{- \frac{1}{t^2}dt}{\frac{\left( t^2 + 1 \right)}{t^2} \frac{\sqrt{t^2 - 1}}{t}}\]
\[ = - \int \frac{t dt}{\left( t^2 + 1 \right) \sqrt{t^2 - 1}}\]
\[\text{ Again  Putting t}^2 - 1 = u^2 \]
\[ \Rightarrow 2t \text{ dt} = 2u \text{ du}\]
\[ \Rightarrow t \text{ dt} = u \text{ du }\]
\[ \therefore I = - \int \frac{u \text{ du}}{\left( u^2 + 2 \right)u}\]
\[ = - \int \frac{du}{u^2 + \left( \sqrt{2} \right)^2}\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{u}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{\sqrt{t^2 - 1}}{\sqrt{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{\frac{1}{x^2} - 1}{2}} \right) + C\]
\[ = - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \sqrt{\frac{1 - x^2}{2 x^2}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १९६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 12 | पृष्ठ १९६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \cos^2 \text{nx dx}\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×