Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \log_{10} x \text{ dx }\]
\[ = \int\frac{\log x}{\log 10}dx\]
\[ = \frac{1}{\log 10}\int 1_{} \cdot \text{ log x dx }\]
` " Taking log x as the first function and 1 as the second function " `
\[ = \frac{1}{\log 10}\left[ \log x \int\text{ 1 dx} - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\text{ 1 dx }\right\}dx \right]\]
\[ = \frac{1}{\log 10}\left[ \log x \cdot x - \int\frac{1}{x} \cdot \text{ x dx } \right]\]
\[ = \frac{1}{\log 10}\left[ x \log x - x \right] + C\]
\[ = \frac{1}{\log 10}\left[ x\left( \log x - 1 \right) \right] + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integrals:
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]