Advertisements
Advertisements
प्रश्न
\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]
बेरीज
उत्तर
\[\text{ Let I }= \int\frac{x^3}{\sqrt{x^8 + 2^2}}dx\]
\[ = \int\frac{x^3}{\sqrt{\left( x^4 \right)^2 + 2^2}}dx\]
\[\text{ Putting x}^4 = t\]
\[ \Rightarrow 4 x^3 \text{ dx }= dt\]
\[ \Rightarrow x^3 \cdot dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{1}{\sqrt{t^2 + 2^2}}dt\]
\[ = \frac{1}{4} \text{ ln} \left| t + \sqrt{t^2 + 4} \right| + C\]
\[ = \frac{1}{4} \text{ ln }\left| x^4 + \sqrt{x^8 + 4} \right| + C ...........\left[ \because t = x^4 \right]\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( \sec^2 x + {cosec}^2 x \right) dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
` ∫ sin 4x cos 7x dx `
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx }\]
` ∫ tan^5 x sec ^4 x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
Write a value of
\[\int e^{3 \text{ log x}} x^4\text{ dx}\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\]
\[\int\frac{x^4 + x^2 - 1}{x^2 + 1} \text{ dx}\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\sqrt{\frac{a + x}{x}}dx\]
\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]
\[\int\frac{\log x}{x^3} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]