मराठी

∫ 3 + 2 Cos X + 4 Sin X 2 Sin X + Cos X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\left( \frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \right)dx\]
\[\text{ Let 3 }+ 2 \cos x + 4 \sin x = A \left( 2 \sin x + \cos x + 3 \right) + B \left( 2 \cos x - \sin x \right) + C\]
\[ \Rightarrow 3 + 2 \cos x + 4 \sin x = \left( 2A - B \right) \sin x + \left( A + 2B \right) \cos x + 3A + C\]

Comparing the coefficients of like terms

\[2A - B = 4 . . . \left( 1 \right)\]
\[A + 2B = 2 . . . (2)\]
\[3A + C = 3 . . . (3)\]

Multiplying eq (1) by 2 and adding it to eq (2) we get ,

\[\Rightarrow 4A - 2B + A + 2B = 8 + 2\]
\[ \Rightarrow 5A = 10\]
\[ \Rightarrow A = 2\]

Putting value of A = 2 in  eq (1)

\[\Rightarrow 2 \times 2 - B = 4\]
\[ \Rightarrow B = 0\]
\[\text{ Putting  value of   A   in eq (3) }\]
\[ \Rightarrow 3 \times 2 + C = 3\]
\[ \Rightarrow C = - 3\]

\[\therefore I = ∫ \left[ \frac{2 \left( 2 \sin x + \cos x + 3 \right) - 3}{2 \sin x + \cos x + 3} \right]dx\]
\[ = 2\ ∫   dx - 3\ ∫ \frac{1}{2 \sin x + \cos x + 3}dx\]
\[\text{ Substituting sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = 2\ ∫   dx - 3\ ∫  \frac{1}{2 \times \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + 3}dx\]
\[ = 2\  ∫   dx - 3\ ∫  \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{4 \tan \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right) + 3 \left( 1 + \tan^2 \frac{x}{2} \right)}dx\]
\[ = 2\  ∫   dx - 3\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{2 \tan^2 \left( \frac{x}{2} \right) + 4 \tan \left( \frac{x}{2} \right) + 4} dx\]
\[ = 2\ ∫   dx - \frac{3}{2}\ ∫ \frac{\sec^2 \left( \frac{x}{2} \right)}{\tan^2 \left( \frac{x}{2} \right) + 2 \tan \left( \frac{x}{2} \right) + 2}dx\]
\[\text{  Putting tan } \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right) dx = 2dt\]
\[ \therefore I = 2\ ∫  dx - \frac{3}{2}\ ∫ \frac{2}{t^2 + 2t + 2} dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{t^2 + 2t + 1 + 1}dt\]
\[ = 2\ ∫   dx - 3\ ∫  \frac{1}{\left( t + 1 \right)^2 + \left( 1 \right)^2}dt\]
\[ = 2x - \frac{3}{1} \tan^{- 1} \left( \frac{t + 1}{1} \right) + C\]
\[ = 2x - 3 \tan^{- 1} \left( \tan \frac{x}{2} + 1 \right) + C \left[ \because t = \tan \frac{x}{2} \right]\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 3 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{x + 1}{x \left( 1 + x e^x \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×