मराठी

∫ 1 1 − 2 Sin X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{1}{1 - 2 \sin x} dx \]

\[\text{ Putting sin x }= \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]

\[ \therefore I = \int\frac{1}{1 - 2 \left( \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}} dx\]

\[ = \int\frac{\sec^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2} - 4 \tan \frac{x}{2}}dx\]

\[\text{ Putting   tan }\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) dx = dt\]

\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \cdot dx = 2dt\]

\[ \therefore I = \int\frac{2}{t^2 - 4t + 1}dt\]

\[ = 2\int\frac{1}{t^2 - 4t + 4 - 4 + 1}dt\]

\[ = 2\int\frac{1}{\left( t - 2 \right)^2 - \left( \sqrt{3} \right)^2}dt\]

\[ = 2 \times \frac{1}{2\sqrt{3}} \text{ ln }\left| \frac{t - 2 - \sqrt{3}}{t - 2 + \sqrt{3}} \right| + C .......................\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{\tan\frac{x}{2} - 2 - \sqrt{3}}{\tan\frac{x}{2} - 2 + \sqrt{3}} \right| + C .........................\left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 65 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \log_{10} x\ dx\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×