मराठी

∫ 1 X 4 − 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x^4 - 1} dx\]
बेरीज

उत्तर

We have,
\[I = \int\frac{dx}{x^4 - 1}\]
\[ = \int\frac{dx}{\left( x^2 - 1 \right) \left( x^2 + 1 \right)}\]
\[ = \int\frac{dx}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[\text{Let }\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1}\]
\[ \Rightarrow \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A\left( x^2 + 1 \right) \left( x + 1 \right) + B\left( x - 1 \right) \left( x^2 + 1 \right) \left( Cx + D \right) \left( x - 1 \right) \left( x + 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)}\]
\[ \Rightarrow 1 = A\left( x^2 + 1 \right) \left( x + 1 \right) + B \left( x - 1 \right) \left( x^2 + 1 \right) + \left( Cx + D \right) \left( x^2 - 1 \right)\]
\[ \Rightarrow 1 = A\left( x^3 + x^2 + x + 1 \right) + B\left( x^3 + x - x^2 - 1 \right) + \left( C x^3 - Cx + D x^2 - D \right)\]
\[ \Rightarrow 1 = \left( A + B + C \right) x^3 + x^2 \left( A - B + D \right) + x\left( A + B - C \right) + A - B - D\]
\[\text{Equating the coefficients of like terms} . \]
\[A + B + C = 0 . . . . . \left( 1 \right)\]
\[A - B + D = 0 . . . . . \left( 2 \right)\]
\[A + B - C = 0 . . . . . \left( 3 \right)\]
\[A - B - D = 1 . . . . . \left( 4 \right)\]
\[\text{Solving these four equations we get}\]
\[A = \frac{1}{4}, B = - \frac{1}{4}, C = 0, D = - \frac{1}{2}\]
\[ \therefore \frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{1}{4\left( x - 1 \right)} - \frac{1}{4\left( x + 1 \right)} - \frac{1}{2\left( x^2 + 1 \right)}\]
\[ \Rightarrow I = \frac{1}{4}\int \frac{dx}{x - 1} - \frac{1}{4}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{dx}{x^2 + 1}\]
\[ = \frac{1}{4}\log \left( x - 1 \right) - \frac{1}{4}\log \left( x + 1 \right) - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]
\[ = \frac{1}{4}\log \left| \frac{x - 1}{x + 1} \right| - \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 55 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{1 + \cos 2x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×