मराठी

∫ Sin 2 X ( 1 + Sin X ) ( 2 + Sin X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]
बेरीज

उत्तर

We have,
\[ I = \int\frac{\sin 2x dx}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)}\]
\[ = \int\frac{2 \sin x \cos x dx}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)}\]
Putting sin x = t

\[ \Rightarrow \cos x dx = dt\]
\[ \therefore I = \int\frac{2t dt}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[ = 2\int\frac{t dt}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[\text{Let }\frac{t}{\left( 1 + t \right) \left( 2 + t \right)} = \frac{A}{1 + t} + \frac{B}{2 + t}\]
\[ \Rightarrow \frac{t}{\left( 1 + t \right) \left( 2 + t \right)} = \frac{A \left( 2 + t \right) + B \left( 1 + t \right)}{\left( 1 + t \right) \left( 2 + t \right)}\]
\[ \Rightarrow t = A \left( 2 + t \right) + B \left( 1 + t \right)\]
Putting 2 + t = 0

\[ \Rightarrow t = - 2\]
\[ - 2 = A \times 0 + B \left( - 2 + 1 \right)\]
\[ \Rightarrow - 2 = B \left( - 1 \right)\]
\[ \Rightarrow B = 2\]
\[\text{Let }t + 1 = 0\]
\[t = - 1\]
\[ \Rightarrow - 1 = A \left( - 1 + 2 \right) + B \times 0\]
\[A = - 1\]
\[ \therefore I = 2\int\left( \frac{- 1}{t + 1} + \frac{2}{t + 2} \right)dt\]
\[ = 2 \left[ - \log \left| t + 1 \right| + 2 \log \left| t + 2 \right| \right] + C\]
\[ = 4 \log \left| t + 2 \right| - 2 \log \left| t + 1 \right| + C\]
\[ = \log \left| \frac{\left( t + 2 \right)^4}{\left( t + 1 \right)^2} \right| + C\]
\[ = \log \left| \frac{\left( \sin x + 2 \right)^4}{\left( \sin x + 1 \right)^2} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 11 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×