मराठी

∫ 1 2 + Cos X Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{2 + \cos x} \text{ dx }\]

बेरीज

उत्तर

\[\text{ Let I } = \int\frac{1}{2 + \cos x}dx\]
\[\text{ Putting cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \therefore I = \int\frac{1}{2 + \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{2 \left( 1 + \tan^2 \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)}dx\]
\[ = \int\frac{\sec^2 \left( \frac{x}{2} \right)}{2 + 2 \tan^2 \left( \frac{x}{2} \right) + 1 - \tan^2 \left( \frac{x}{2} \right)}dx\]
\[ = \frac{\sec^2 \left( \frac{x}{2} \right)}{3 + \tan^2 \left( \frac{x}{2} \right)}dx\]
\[\text{ Putting tan } \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec }^2 \left( \frac{x}{2} \right) dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) dx = \text{ 2  dt }\]
\[ \therefore I = \int\frac{2}{3 + t^2} \text{ dt}\]
\[ = 2\int\frac{1}{t^2 + \left( \sqrt{3} \right)^2}dt\]
\[ = \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{t}{\sqrt{3}} \right) + C \]
\[ = \frac{2}{\sqrt{3}} \text{ tan}^{- 1} \left( \frac{\tan \frac{x}{2}}{\sqrt{3}} \right) + C............ \left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 73 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int \tan^5 x\ dx\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×