मराठी

∫ √ 1 − Sin X 1 + Cos X E − X / 2 Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}}{1 + \cos x} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\sqrt{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2} e^{- \frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \frac{1}{2}\int\left( \sec \frac{x}{2} - \tan \frac{x}{2} \sec \frac{x}{2} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[\text{ Let e}^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) = t\]

\[ \Rightarrow \left[ e^{- \frac{x}{2}} \left( \sec \frac{x}{2} \tan \frac{x}{2} \times \frac{1}{2} \right) - e^{- \frac{x}{2}} \frac{\sec \left( \frac{x}{2} \right)}{2} \right] dx = dt\]

\[ \Rightarrow \frac{1}{2}\left( \sec \frac{x}{2} \tan \frac{x}{2} - \sec \frac{x}{2} \right) e^{- \frac{x}{2}} dx = dt\]

\[ \therefore I = - \int dt\]

\[ = - t + C\]

\[ = - e^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 119 | पृष्ठ २०५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

` ∫  { x^2 dx}/{x^6 - a^6} dx `

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int \tan^{- 1} \left( \sqrt{x} \right) \text{dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x \sec^2 2x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×