मराठी

∫ ( 1 + X ) 3 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 
बेरीज

उत्तर

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}}dx\]
\[ = \int\left( \frac{1 + x^3 + 3 \left( 1 \right)^2 x + 3\left( 1 \right) x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( \frac{1 + x^3 + 3x + 3 x^2}{\sqrt{x}} \right) dx\]
\[ = \int\left( \frac{1}{\sqrt{x}} + \frac{x^3}{\sqrt{x}} + \frac{3x}{\sqrt{x}} + \frac{3 x^2}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^{- \frac{1}{2}} + x^\frac{5}{2} + 3 x^\frac{1}{2} + 3 x^\frac{3}{2} \right)dx\]
\[ = \left[ \frac{x^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} + \frac{x^\frac{5}{2} + 1}{\frac{5}{2} + 1} + 3\frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} + 3\frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = 2\sqrt{x} + \frac{2}{7} x^\frac{7}{2} + 2 x^\frac{3}{2} + \frac{6}{5} x^\frac{5}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 7 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{x^2}{x^6 + a^6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


\[\int\frac{x^2}{x^2 + 7x + 10}\text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×