मराठी

∫ √ X ( X 3 − 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
बेरीज

उत्तर

\[\int\sqrt{x} \left( x^3 - \frac{2}{x} \right)dx\]
\[ = \int\left( x^\frac{7}{2} - \frac{2}{\sqrt{x}} \right)dx\]
\[ = \int\left( x^\frac{7}{2} - 2 x^{- \frac{1}{2}} \right) dx\]
`= x^(7/2+1) / (7/2+1)  - 2 (x^(-1/2+1))/(-1/2+1 )+ C`
\[ = \frac{2}{9} x^\frac{9}{2} - 4 x^\frac{1}{2} + C\]
\[ = \frac{2}{9} x^\frac{9}{2} - 4\sqrt{x} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.02 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.02 | Q 10 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \cot^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×