Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^x \left( \log x + \frac{1}{x} \right)dx\]
\[\text{ Here}, f(x) = \log x\]
\[ \Rightarrow f'(x) = \frac{1}{x}\]
\[\text{ put }\ e^x f(x) = t\]
\[ \Rightarrow e^x \log x = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \log x + e^x \frac{1}{x} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left( \log x + \frac{1}{x} \right)dx = dt\]
\[ \therefore \int e^x \left[ \log x + \frac{1}{x} \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \log x + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]