मराठी

∫ √ 1 − Sin X 1 + Cos X E − X / 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2}  \text{ dx }\]
बेरीज

उत्तर

Let I=\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} dx\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2\sin\frac{x}{2}\cos\frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\frac{\sqrt{\left( \cos\frac{x}{2} - \sin\frac{x}{2} \right)^2}}{2 \cos^2 \frac{x}{2}} e^\frac{- x}{2} dx\]

\[ = \int\left( \frac{\sin\frac{x}{2} - \cos\frac{x}{2}}{2 \cos^2 \frac{x}{2}} \right) e^\frac{- x}{2} dx\]

\[ = \int\left[ \frac{1}{2}\sec\frac{x}{2}\tan\frac{x}{2} - \frac{1}{2}\sec\left( \frac{x}{2} \right) \right] e^\frac{- x}{2} dx\]

\[ = \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx\]

\[\text{ let e}^\frac{- x}{2} \text{ sec }\left( \frac{x}{2} \right) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^\frac{- x}{2} \frac{\sec\left( \frac{x}{2} \right)\tan\left( \frac{\mathit{x}}{2} \right)}{2} + \sec\left( \frac{x}{2} \right) \times e^\frac{- x}{2} \times \frac{- 1}{2} = \frac{dt}{dx}\]

\[ \Rightarrow \frac{e}{2}^\frac{- x}{2} \left[ \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right]dx = dt\]

\[ \therefore \frac{1}{2}\int\left( \sec\frac{x}{2}\tan\frac{x}{2} - \sec\frac{x}{2} \right) e^\frac{- x}{2} dx = \int dt\]

\[ \Rightarrow I = \int t + C\]

\[ = e^\frac{- x}{2} \sec\left( \frac{x}{2} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.26 [पृष्ठ १४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.26 | Q 14 | पृष्ठ १४३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{x^4 - 1} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×