Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int e^x \left[ \frac{1 + x}{\left( 2 + x \right)^2} \right]dx\]
\[ = \int e^x \left( \frac{2 + x - 1}{\left( 2 + x \right)^2} \right)dx\]
\[ = \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx\]
\[\text{ Here, } f(x) = \frac{1}{2 + x}\]
\[ \Rightarrow f'(x) = \frac{- 1}{\left( 2 + x \right)^2}\]
\[\text{ Put e }^x f(x) = t\]
\[ \Rightarrow e^x \frac{1}{x + 2} = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \frac{1}{x + 2} + e^x \frac{- 1}{\left( x + 2 \right)^2} = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \frac{1}{x + 2} - \frac{1}{\left( x + 2 \right)^2} \right]dx = dt\]
\[ \therefore \int e^x \left[ \frac{1}{\left( 2 + x \right)} - \frac{1}{\left( 2 + x \right)^2} \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = \frac{e^x}{2 + x} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]