मराठी

∫ X 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^2 \sin^2 x\ dx\]
बेरीज

उत्तर

\[\int x^2 \sin^2 x\ dx\]
`   " Taking x"^2"  as the first function and sin"^2 x " as the second function . " ` 
\[ = x^2 \int\frac{1 - \cos2x}{2} - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\frac{1 - \cos2x}{2}dx \right\}dx\]

` = x^2/2  ( x - {sin 2x}/2 ) - ∫   x^2dx + ∫  { x sin 2x} /2 dx `

  `[   \text{  Here, taking x as the first function and sin 2x as the second function} ]. ` 
`=  x^3 / 2 - { x^2 sin 2x}/4   - x^3/3 + 1/2 [ x  ∫  sin 2x - ∫  { d /dx (x) ∫   sin  2x  dx } dx] `

\[ = \frac{x^3}{2} - \frac{x^2 \sin2x}{4} - \frac{x^3}{3} + \frac{1}{2}\left[ \frac{- x\cos2x}{2} + \int\frac{\text{ cos 2x  dx }}{4} \right]\]
\[ = \frac{x^3}{6} - \frac{x^2 \sin2x}{4} - \frac{x \cos2x}{4} + \frac{\sin2x}{8} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 16 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int {cosec}^3 x\ dx\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×