English

∫ X 2 Sin 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int x^2 \sin^2 x\ dx\]
Sum

Solution

\[\int x^2 \sin^2 x\ dx\]
`   " Taking x"^2"  as the first function and sin"^2 x " as the second function . " ` 
\[ = x^2 \int\frac{1 - \cos2x}{2} - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\frac{1 - \cos2x}{2}dx \right\}dx\]

` = x^2/2  ( x - {sin 2x}/2 ) - ∫   x^2dx + ∫  { x sin 2x} /2 dx `

  `[   \text{  Here, taking x as the first function and sin 2x as the second function} ]. ` 
`=  x^3 / 2 - { x^2 sin 2x}/4   - x^3/3 + 1/2 [ x  ∫  sin 2x - ∫  { d /dx (x) ∫   sin  2x  dx } dx] `

\[ = \frac{x^3}{2} - \frac{x^2 \sin2x}{4} - \frac{x^3}{3} + \frac{1}{2}\left[ \frac{- x\cos2x}{2} + \int\frac{\text{ cos 2x  dx }}{4} \right]\]
\[ = \frac{x^3}{6} - \frac{x^2 \sin2x}{4} - \frac{x \cos2x}{4} + \frac{\sin2x}{8} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.25 [Page 133]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.25 | Q 16 | Page 133

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×