Advertisements
Advertisements
Question
Solution
\[\int x^2 \sin^2 x\ dx\]
` " Taking x"^2" as the first function and sin"^2 x " as the second function . " `
\[ = x^2 \int\frac{1 - \cos2x}{2} - \int\left\{ \frac{d}{dx}\left( x^2 \right)\int\frac{1 - \cos2x}{2}dx \right\}dx\]
` = x^2/2 ( x - {sin 2x}/2 ) - ∫ x^2dx + ∫ { x sin 2x} /2 dx `
`[ \text{ Here, taking x as the first function and sin 2x as the second function} ]. `
`= x^3 / 2 - { x^2 sin 2x}/4 - x^3/3 + 1/2 [ x ∫ sin 2x - ∫ { d /dx (x) ∫ sin 2x dx } dx] `
\[ = \frac{x^3}{2} - \frac{x^2 \sin2x}{4} - \frac{x^3}{3} + \frac{1}{2}\left[ \frac{- x\cos2x}{2} + \int\frac{\text{ cos 2x dx }}{4} \right]\]
\[ = \frac{x^3}{6} - \frac{x^2 \sin2x}{4} - \frac{x \cos2x}{4} + \frac{\sin2x}{8} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate the following integrals:
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int \left( e^x + 1 \right)^2 e^x dx\]