English

∫ X 3 √ 1 + X 2 D X = a ( 1 + X 2 ) 3 2 + B √ 1 + X 2 + C , Then - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 

Options

  • \[ a = \frac{1}{3}, b = 1\]

  • \[a = - \frac{1}{3}, b = 1\]

  • \[ a = - \frac{1}{3}, b = - 1\]

  • \[ a = \frac{1}{3}, b = - 1\]

     

MCQ

Solution

\[ a = \frac{1}{3}, b = - 1\]

 

\[\text{Let }I = \int\frac{x^3}{\sqrt{1 + x^2}}dx\]

\[ = \int\frac{x . x^2}{\sqrt{1 + x^2}}dx\]

\[\text{Let }\left( 1 + x^2 \right) = t\]

\[\text{On differentiating both sides, we get}\]

\[ 2x\ dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{t - 1}{\sqrt{t}}dt\]

\[ = \frac{1}{2}\int\left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right)dt\]

\[ = \frac{1}{2}\int\left( t^\frac{1}{2} - t^\frac{- 1}{2} \right)dt\]

\[ = \frac{1}{2}\left( \frac{2}{3} t^\frac{3}{2} - \frac{2}{1} t^\frac{1}{2} \right) + C\]

\[ = \left( \frac{1}{3} \left( 1 + x^2 \right)^\frac{3}{2} - \sqrt{1 + x^2} \right) + C\]

\[\text{Since, }\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\]

\[\text{Therefore, }a = \frac{1}{3}, b = - 1 . \]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 202]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 33 | Page 202

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int \tan^3 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×