Advertisements
Advertisements
Question
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
Options
\[ a = \frac{1}{3}, b = 1\]
\[a = - \frac{1}{3}, b = 1\]
\[ a = - \frac{1}{3}, b = - 1\]
- \[ a = \frac{1}{3}, b = - 1\]
Solution
\[ a = \frac{1}{3}, b = - 1\]
\[\text{Let }I = \int\frac{x^3}{\sqrt{1 + x^2}}dx\]
\[ = \int\frac{x . x^2}{\sqrt{1 + x^2}}dx\]
\[\text{Let }\left( 1 + x^2 \right) = t\]
\[\text{On differentiating both sides, we get}\]
\[ 2x\ dx = dt\]
\[ \therefore I = \frac{1}{2}\int\frac{t - 1}{\sqrt{t}}dt\]
\[ = \frac{1}{2}\int\left( \frac{t}{\sqrt{t}} - \frac{1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{2}\int\left( t^\frac{1}{2} - t^\frac{- 1}{2} \right)dt\]
\[ = \frac{1}{2}\left( \frac{2}{3} t^\frac{3}{2} - \frac{2}{1} t^\frac{1}{2} \right) + C\]
\[ = \left( \frac{1}{3} \left( 1 + x^2 \right)^\frac{3}{2} - \sqrt{1 + x^2} \right) + C\]
\[\text{Since, }\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\]
\[\text{Therefore, }a = \frac{1}{3}, b = - 1 . \]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
Evaluate the following integral:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]