Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx}\]
\[\text{ Putting tan}^{- 1} x = t \Rightarrow x = \tan t\]
\[ \Rightarrow \frac{1}{1 + x^2} \text{ dx}= dt\]
\[ \Rightarrow dx = \left( 1 + x^2 \right)dt\]
\[ \Rightarrow dx = \left( 1 + \tan^2 t \right)dt\]
\[ \therefore I = \int\frac{e^{mt}}{\left( 1 + \tan^2 t \right)^\frac{3}{2}}\left( 1 + \tan^2 t \right)dt\]
\[ = \int\frac{e^{mt} dt}{\sqrt{1 + \tan^2 t}}\]
\[ = \int {e_{II}}^{mt} \cos_I t \text{ dt}\]
\[ = \cos t\frac{e^{mt}}{m} - \int\left( - \sin t \right)\frac{e^{mt}}{m} \text{ dt}\]
\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m}\int e^{mt} \text{ sin t dt }\]
\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m} I_1 . . . . . \left( 1 \right)\]
\[\text{ Where,} \]
\[ I_1 = \int {e_{II}}^{mt} \sin_I t \text{ dt}\]
\[ = \sin t\frac{e^{mt}}{m} - \int\cos t\frac{e^{mt}}{m}dt\]
\[ I_1 = \sin t\frac{e^{mt}}{m} - \frac{1}{m}I . . . . . \left( 2 \right)\]
\[\text{ from} \left( 1 \right)\text{ and }\left( 2 \right)\]
\[I = \cos t\frac{e^{mt}}{m} + \frac{1}{m} \left[ \sin t\frac{e^{mt}}{m} - \frac{1}{m}I \right]\]
\[ \Rightarrow I = \cos t\frac{e^{mt}}{m} + \frac{\text{ sin t e}^{mt}}{m^2} - \frac{1}{m^2} I\]
\[ \Rightarrow I + \frac{I}{m^2} = \frac{e^{mt} \left( m \cos t + \sin t \right)}{m^2}\]
\[ \Rightarrow I = \frac{e^{mt} \left( m \cos t + \sin t \right)}{1 + m^2} + C\]
\[ \Rightarrow I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left[ \cos t\frac{m}{\sqrt{1 + m^2}} + \sin t\frac{1}{\sqrt{1 + m^2}} \right] + C\]
\[\text{ Let } \frac{m}{\sqrt{1 + m^2}} = \cos \theta\]
\[\text{ Then, }\sin\theta = \frac{1}{\sqrt{1 + m^2}}\]
\[ \Rightarrow \cot\theta = m\]
\[ \Rightarrow \theta = \cot^{- 1} m\]
\[ \therefore I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos t \cos \theta + \sin t \sin \theta \right\} + C\]
\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( t - \theta \right) \right\} + C\]
\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( \tan^{- 1} x - \cot^{- 1} m \right) \right\} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`