English

∫ E M Tan − 1 X ( 1 + X 2 ) 3 / 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^\frac{3}{2}}\text{ dx}\]

\[\text{ Putting tan}^{- 1} x = t \Rightarrow x = \tan t\]

\[ \Rightarrow \frac{1}{1 + x^2} \text{ dx}= dt\]

\[ \Rightarrow dx = \left( 1 + x^2 \right)dt\]

\[ \Rightarrow dx = \left( 1 + \tan^2 t \right)dt\]

\[ \therefore I = \int\frac{e^{mt}}{\left( 1 + \tan^2 t \right)^\frac{3}{2}}\left( 1 + \tan^2 t \right)dt\]

\[ = \int\frac{e^{mt} dt}{\sqrt{1 + \tan^2 t}}\]

\[ = \int {e_{II}}^{mt} \cos_I t \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} - \int\left( - \sin t \right)\frac{e^{mt}}{m} \text{ dt}\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m}\int e^{mt} \text{ sin t dt }\]

\[ = \cos t\frac{e^{mt}}{m} + \frac{1}{m} I_1 . . . . . \left( 1 \right)\]

\[\text{ Where,} \]

\[ I_1 = \int {e_{II}}^{mt} \sin_I t  \text{  dt}\]

\[ = \sin t\frac{e^{mt}}{m} - \int\cos t\frac{e^{mt}}{m}dt\]

\[ I_1 = \sin t\frac{e^{mt}}{m} - \frac{1}{m}I . . . . . \left( 2 \right)\]

\[\text{ from} \left( 1 \right)\text{  and }\left( 2 \right)\]

\[I = \cos t\frac{e^{mt}}{m} + \frac{1}{m} \left[ \sin t\frac{e^{mt}}{m} - \frac{1}{m}I \right]\]

\[ \Rightarrow I = \cos t\frac{e^{mt}}{m} + \frac{\text{ sin t e}^{mt}}{m^2} - \frac{1}{m^2} I\]

\[ \Rightarrow I + \frac{I}{m^2} = \frac{e^{mt} \left( m \cos t + \sin t \right)}{m^2}\]

\[ \Rightarrow I = \frac{e^{mt} \left( m \cos t + \sin t \right)}{1 + m^2} + C\]

\[ \Rightarrow I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left[ \cos t\frac{m}{\sqrt{1 + m^2}} + \sin t\frac{1}{\sqrt{1 + m^2}} \right] + C\]

\[\text{ Let }  \frac{m}{\sqrt{1 + m^2}} = \cos \theta\]

\[\text{ Then, }\sin\theta = \frac{1}{\sqrt{1 + m^2}}\]

\[ \Rightarrow \cot\theta = m\]

\[ \Rightarrow \theta = \cot^{- 1} m\]

\[ \therefore I = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos t \cos \theta + \sin t \sin \theta \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( t - \theta \right) \right\} + C\]

\[ = \frac{e^{mt}}{\sqrt{1 + m^2}} \left\{ \cos \left( \tan^{- 1} x - \cot^{- 1} m \right) \right\} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 121 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{  dx }\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×