English

∫ X + 1 ( X − 1 ) √ X + 2 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int \frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx }\]
\[\text{ Putting  x }+ 2 = t^2 \]
\[ \Rightarrow x = t^2 - 2\]
\[\text{ Diff both sides }
\]
\[dx = 2t \text{ dt }\]
\[I = \int \frac{\left( t^2 - 2 + 1 \right)2t \text{ dt }}{\left( t^2 - 2 - 1 \right)t}\]
\[ = 2\int \left( \frac{t^2 - 1}{t^2 - 3} \right)dt\]
\[ = 2\int\left( \frac{t^2 - 3 + 2}{t^2 - 3} \right)dt\]
\[ = 2\int \left( \frac{t^2 - 3}{t^2 - 3} \right)dt + 4\int\frac{dt}{t^2 - 3}\]
\[ = 2\int dt + 4\int\frac{dt}{t^2 - \left( \sqrt{3} \right)^2}\]
\[ = 2t + 4 \times \frac{1}{2\sqrt{3}}\text{ log } \left| \frac{t - \sqrt{3}}{t + \sqrt{3}} \right| + C\]
\[ = 2\sqrt{x + 2} + \frac{2}{\sqrt{3}}\text{ log }\left| \frac{\sqrt{x + 2} - \sqrt{3}}{\sqrt{x + 2} + \sqrt{3}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 3 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int \sin^5 x \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×