English

∫ 1 Sin X + √ 3 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]
Sum

Solution

\[\text{ Let I }= \int \frac{1}{\sin x + \sqrt{3} \cos x}dx\]
\[\text{ Putting  sin x} = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and }\cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ \Rightarrow I = \int \frac{1}{\frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \sqrt{3}\frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}}dx\]
\[ = \int \frac{1 + \tan^2 \frac{x}{2}}{2 \tan \frac{x}{2} + \sqrt{3} - \sqrt{3} \tan^2 \frac{x}{2}}dx\]
\[ = \int\frac{\sec^2 \frac{x}{2}}{- \sqrt{3} \tan^2 \frac{x}{2} + 2 \tan \frac{x}{2} + \sqrt{3}}dx\]

\[\text{ Let }\tan \frac{x}{2} = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \frac{x}{2}dx = dt\]
\[ \Rightarrow \sec^2 \frac{x}{2}dx = 2dt\]
\[ \therefore I = 2\int \frac{dt}{- \sqrt{3} t^2 + 2t + \sqrt{3}}\]
\[ = - \frac{2}{\sqrt{3}}\int \frac{dt}{t^2 - \frac{2}{\sqrt{3}}t - 1}\]
\[ = - \frac{2}{\sqrt{3}}\int\frac{dt}{t^2 - \frac{2}{\sqrt{3}}t + \left( \frac{1}{\sqrt{3}} \right)^2 - \left( \frac{1}{\sqrt{3}} \right)^2 - 1}\]
\[ = - \frac{2}{\sqrt{3}}\int \frac{dt}{\left( t - \frac{1}{\sqrt{3}} \right)^2 - \left( \frac{2}{\sqrt{3}} \right)^2}\]
\[ = - \frac{2}{\sqrt{3}} \times \frac{1}{2\frac{2}{\sqrt{3}}}\text{ log      }\left| \frac{t - \frac{1}{\sqrt{3}} - \frac{2}{\sqrt{3}}}{t - \frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}}} \right| + C\]

\[= - \frac{1}{2}\text{ log }\left| \frac{t - \frac{3}{\sqrt{3}}}{t + \frac{1}{\sqrt{3}}} \right| + C\]
\[ = - \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}t - 3}{\sqrt{3}t + 1} \right| + C\]
\[ = \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}t + 1}{\sqrt{3}t - 3} \right| + C\]
\[ = \frac{1}{2}\text{ log }\left| \frac{\sqrt{3}\tan\frac{x}{2} + 1}{\sqrt{3}\tan\frac{x}{2} - 3} \right| + C\]
\[or, \frac{1}{2}\text{ log }\left| \frac{1 + \sqrt{3}\tan\frac{x}{2}}{3 - \sqrt{3}\tan\frac{x}{2}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 12 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×