Advertisements
Advertisements
Question
\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]
Sum
Solution
\[\int\frac{e^\sqrt{x} \cdot \cos \left( e^\sqrt{x} \right)}{\sqrt{x}}dx\]
\[\text{Let e}^\sqrt{x} = t\]
\[ \Rightarrow e^\sqrt{x} \times \frac{1}{2\sqrt{x}} = \frac{dt}{dx}\]
\[ \Rightarrow \frac{e^\sqrt{x}}{\sqrt{x}}dx = 2dt\]
\[Now, \int\frac{e^\sqrt{x} \cdot \cos \left( e^\sqrt{x} \right)}{\sqrt{x}}dx\]
\[ = 2\int\text{cos t dt} \]
\[ = 2 \sin t + C\]
\[ = 2 \sin \left( e^\sqrt{x} \right) + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]
\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
` ∫ tan 2x tan 3x tan 5x dx `
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int x e^{2x} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
` ∫ sin x log (\text{ cos x ) } dx `
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int \tan^4 x\ dx\]
\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]