English

∫ 1 5 + 4 Cos X D X∫ 1 5 + 4 Cos X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{5 + 4 \cos x} dx\]
Sum

Solution

\[Let I = \int \frac{1}{5 + 4 \cos x}dx\]
\[Putting\ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ I = \int \frac{1}{5 + 4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 4\left( 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2} dx}{5 + 5 \tan^2 \frac{x}{2} + 4 - 4 \tan^2 \frac{x}{2}}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{\tan^2 \left( \frac{x}{2} \right) + 9}\]
\[Let \tan \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{t^2 + 3^2}\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{t}{3} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{\tan \left( \frac{x}{2} \right)}{3} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 1 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫      tan^5    x   dx `


\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×