Advertisements
Advertisements
Question
Solution
\[Let I = \int \frac{1}{5 + 4 \cos x}dx\]
\[Putting\ \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]
\[ I = \int \frac{1}{5 + 4\left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5 \left( 1 + \tan^2 \frac{x}{2} \right) + 4\left( 1 - \tan^2 \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2} dx}{5 + 5 \tan^2 \frac{x}{2} + 4 - 4 \tan^2 \frac{x}{2}}\]
\[ = \int \frac{\sec^2 \left( \frac{x}{2} \right) dx}{\tan^2 \left( \frac{x}{2} \right) + 9}\]
\[Let \tan \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \sec^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \sec^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{t^2 + 3^2}\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{t}{3} \right) + C\]
\[ = \frac{2}{3} \tan^{- 1} \left( \frac{\tan \left( \frac{x}{2} \right)}{3} \right) + C\]
APPEARS IN
RELATED QUESTIONS
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
Integrate the following integrals:
` ∫ tan^5 x dx `
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`