Advertisements
Advertisements
Question
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
Sum
Solution
\[\int\frac{\sin \left( 2x \right)}{\left( a + b \cos 2x \right)^2}dx\]
\[\text{Let a + b }\cos2x = t\]
\[ \Rightarrow - \text{b }\sin \left( 2x \right) dx \times 2 = dt\]
\[ \Rightarrow \sin \left( 2x \right) dx = \frac{- dt}{2b}\]
\[Now, \int\frac{\sin \left( 2x \right)}{\left( a + b \cos 2x \right)^2}dx\]
\[ = - \frac{1}{2b}\int\frac{dt}{t^2}\]
\[ = \frac{- 1}{2b}\int t^{- 2} dt\]
\[ = \frac{- 1}{2b}\left[ \frac{t^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \frac{1}{2b} \times \frac{1}{t} + C\]
\[ = \frac{1}{2b \left( a + b \cos 2x \right)} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\sin^2 x}{1 + \cos x} \text{dx} \]
\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]
\[\int\frac{1 - \cos x}{1 + \cos x} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\sqrt{1 + e^x} . e^x dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int x^3 \sin x^4 dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int \sec^4 2x \text{ dx }\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
\[\int x^2 e^{- x} \text{ dx }\]
\[\int x^2 \sin^2 x\ dx\]
\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]
\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\sin x + \sin 2x} dx\]
Evaluate the following integral:
\[\int\frac{x^2}{1 - x^4}dx\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \sin^3 x \cos^4 x\ \text{ dx }\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \left( \sin^{- 1} x \right)^3 dx\]
\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]