English

∫ X ( X 2 + 4 ) √ X 2 + 9 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
Sum

Solution

\[\text{ We  have,} \]
\[I = \int\frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}}\]
\[\text{ Putting  x}^2 = t\]
\[ \Rightarrow 2x \text{ dx } = dt\]
\[ \Rightarrow x \text{ dx} = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{\left( t + 4 \right) \sqrt{t + 9}}\]
\[\text{ Again Putting  t} + 9 = u^2 \]
\[ \Rightarrow dt = 2u\text{  du }\]
\[ \therefore I = \frac{1}{2}\int\frac{2u \text{ du}}{\left( u^2 - 9 + 4 \right) u}\]
\[ = \int\frac{du}{u^2 - 5}\]
\[ = \int\frac{du}{u^2 - \left( \sqrt{5} \right)^2}\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{u - \sqrt{5}}{u + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log } \left| \frac{\sqrt{t + 9} - \sqrt{5}}{\sqrt{t + 9} + \sqrt{5}} \right| + C\]
\[ = \frac{1}{2\sqrt{5}} \text{ log} \left| \frac{\sqrt{x^2 + 9} - \sqrt{5}}{\sqrt{x^2 + 9} + \sqrt{5}} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.32 [Page 196]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.32 | Q 14 | Page 196

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\left( x + 2 \right) \sqrt{3x + 5}  \text{dx} \]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int \sin^5 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{1}{e^x + e^{- x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×