English

∫ √ 1 − Sin X 1 + Cos X E − X / 2 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]
Sum

Solution

\[\text{We have}, \]

\[I = \int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}}{1 + \cos x} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\sqrt{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2} e^{- \frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \text{ dx }\]

\[ = \int\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} e^{- \frac{x}{2}} \text{ dx }\]

\[ = \frac{1}{2}\int\left( \sec \frac{x}{2} - \tan \frac{x}{2} \sec \frac{x}{2} \right) e^{- \frac{x}{2}} \text{ dx }\]

\[\text{ Let e}^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) = t\]

\[ \Rightarrow \left[ e^{- \frac{x}{2}} \left( \sec \frac{x}{2} \tan \frac{x}{2} \times \frac{1}{2} \right) - e^{- \frac{x}{2}} \frac{\sec \left( \frac{x}{2} \right)}{2} \right] dx = dt\]

\[ \Rightarrow \frac{1}{2}\left( \sec \frac{x}{2} \tan \frac{x}{2} - \sec \frac{x}{2} \right) e^{- \frac{x}{2}} dx = dt\]

\[ \therefore I = - \int dt\]

\[ = - t + C\]

\[ = - e^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 119 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int \left( e^x + 1 \right)^2 e^x dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]

\[\int\frac{18}{\left( x + 2 \right) \left( x^2 + 4 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×