Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- \frac{x}{2}} \text{ dx }\]
\[ = \int\left( \frac{\sqrt{\cos^2 \frac{x}{2} + \sin^2 \frac{x}{2} - 2 \sin \frac{x}{2} \cos \frac{x}{2}}}{1 + \cos x} \right) e^{- \frac{x}{2}} \text{ dx }\]
\[ = \int\frac{\sqrt{\left( \cos \frac{x}{2} - \sin \frac{x}{2} \right)^2} e^{- \frac{x}{2}}}{2 \cos^2 \frac{x}{2}} \text{ dx }\]
\[ = \int\frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{2 \cos^2 \frac{x}{2}} e^{- \frac{x}{2}} \text{ dx }\]
\[ = \frac{1}{2}\int\left( \sec \frac{x}{2} - \tan \frac{x}{2} \sec \frac{x}{2} \right) e^{- \frac{x}{2}} \text{ dx }\]
\[\text{ Let e}^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \left[ e^{- \frac{x}{2}} \left( \sec \frac{x}{2} \tan \frac{x}{2} \times \frac{1}{2} \right) - e^{- \frac{x}{2}} \frac{\sec \left( \frac{x}{2} \right)}{2} \right] dx = dt\]
\[ \Rightarrow \frac{1}{2}\left( \sec \frac{x}{2} \tan \frac{x}{2} - \sec \frac{x}{2} \right) e^{- \frac{x}{2}} dx = dt\]
\[ \therefore I = - \int dt\]
\[ = - t + C\]
\[ = - e^{- \frac{x}{2}} \sec \left( \frac{x}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ 1/ {1+ cos 3x} ` dx
` ∫ sin x \sqrt (1-cos 2x) dx `
Integrate the following integrals:
Write the anti-derivative of \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]