Advertisements
Advertisements
Question
\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\]
Sum
Solution
\[\text{Let I} = \int\frac{\ cosx}{\cos\left( x - a \right)}dx\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
\[\text{Putting x }- a = t \]
\[ \Rightarrow x = a + t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{\cos\left( a + t \right)dt}{\cos t }\]
\[ = \int\frac{\cos a \cos t}{\cos t} - \frac{\sin a \sin t}{\cos t}dt\]
\[ = \int\left( \cos a - \sin a \tan t \right)dt\]
\[ = t\cos a - \text{sin a } In \left| \text{sec t} \right| + C\]
\[ = \left( x - a \right)\cos a - \text{sin a } In\left| \sec\left( x - a \right) \right| + C \left[ \because t = x - a \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]
\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]
\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]
\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
` = ∫ root (3){ cos^2 x} sin x dx `
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
\[\int\frac{x^4 + 1}{x^2 + 1} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]
\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{p + q \tan x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\left( e^\text{log x} + \sin x \right) \text{ cos x dx }\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\sqrt{a^2 - x^2}\text{ dx }\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]