English

∫ X + 1 √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]
Sum

Solution

\[\text{ Let I }= \int\left( \frac{x + 1}{\sqrt{x^2 + 1}} \right) dx\]
` = ∫  {x      dx}/{\sqrt{x^2 + 1}} +  ∫  {dx}/{\sqrt{x^2 + 1}}`
\[\text{ Putting, x }^2 + 1 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \Rightarrow \text{ x dx  }= \frac{dt}{2}\]
\[\text{ Then,} \]
\[I = \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \int\frac{dx}{\sqrt{x^2 + 1}}\]
\[ = \frac{1}{2}\int t^{- \frac{1}{2}} dt + \int\frac{dx}{\sqrt{x^2 + 1}}\]
\[ = \frac{1}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{t} + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]
\[ = \sqrt{x^2 + 1} + \text{ log }\left| x + \sqrt{x^2 + 1} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.21 [Page 110]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.21 | Q 11 | Page 110

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


` ∫  sec^6   x  tan    x   dx `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{\cos x}{\sqrt{4 + \sin^2 x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

 
` ∫  x tan ^2 x dx 

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×